Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes

نویسندگان

  • M. G. Mostafa
  • Bo Zhu
  • Marlene Cran
  • Noel Dow
  • Nicholas Milne
  • Dilip Desai
  • Mikel Duke
چکیده

Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD) may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE) membranes with a hydrophilic polyurethane surface layer (PU-PTFE) are used for the first time for direct contact MD (DCMD) on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF) was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5-6 L/m²/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of ultrathin graphene oxide-coated membrane with hydrophilic properties for arsenate removal from water

Terms and conditions of current drinking water quality standards, including reducing the maximum arsenic concentration from 50 μgl-1 to 10 μgl-1 and predicted stricter standards in future, reveals the necessity for development of new technologies. This study aimed to prepare and evaluate a new nanocomposite membrane using graphene oxide (GO) thin layer to remove arsenic (v) from water. To fabri...

متن کامل

A Facile Approach of Thin Film Coating Consisted of Hydrophobic Titanium Dioxide over Polypropylene Membrane for Membrane Distillation

In this work, the hydrophobic modification of TiO2 nanoparticles (HTiO2) was carried out by reacting with dodecylphosphonic acid (DDPA) and hexylamine solution. A facile approach of the self-assembly technique was used for the coating of hydrophobic HTiO2 layer over the microporous polypropylene (PP) membrane. The self-assembled layer was formed between the interface of trimesoyl chloride (TMC)...

متن کامل

Study on Commercial Membranes and Sweeping Gas Membrane Distillation for Concentrating of Glucose Syrup

In this work, sweeping gas membrane distillation (SGMD) process was used for concentrating of glucose syrup. The main questions in this work include: is SGMD process practical for concentrating of glucose solution prior the fermentation step in bioethanol process?. and are the commercially available hydrophobic membranes sufficient enough to develop the SGMD process in pilot scale for this issu...

متن کامل

Performance of Chemically Modified TiO2-poly (vinylidene fluoride) DCMD for Nutrient Isolation and Its Antifouling Properties

The surface properties of TiO2-PVDF nanocomposite membranes were investigated by incorporating different chemically modified TiO2 nanoparticles into the poly (vinylidene fluoride) (PVDF) matrix. The nanocomposite membranes were prepared via dual coagulation bath diffusion and the induced phase inversion method. The membrane surface morphologies were investigated by using SEM and AFM and related...

متن کامل

Preparation and characterization of nano-porous Polyacrylonitrile (PAN) membranes with hydrophilic surface

Polyacrylonitrile (PAN) membranes with nano-porous surface and high hydrophilicity were fabricated by addition of polyoxyethylene (40) nonylphenyl ether (IGEPAL) as an additive in the casting solution. The membranes were prepared from PAN/IGEPAL/1-Methyl-2-pyrrolidone (NMP) via phase inversion induced by immersion precipitation technique. Pure water was used as coagulation medium. The effects o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017